第一节 MongoDB简介

亮子 2021-06-16 14:33:55 17882 1 1 0

图片alt

1、介绍

MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。

MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。

  • MongoDB 官网地址:https://www.mongodb.com/

  • MongoDB 官方英文文档:https://docs.mongodb.com/manual/

  • MongoDB 各平台下载地址:https://www.mongodb.com/download-center#community

2、什么是MongoDB

MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统。

在高负载的情况下,添加更多的节点,可以保证服务器性能。

MongoDB 旨在为WEB应用提供可扩展的高性能数据存储解决方案。

MongoDB 将数据存储为一个文档,数据结构由键值(key=>value)对组成。MongoDB 文档类似于 JSON 对象。字段值可以包含其他文档,数组及文档数组。

图片alt

3、特点

它的特点是高性能、易部署、易使用,存储数据非常方便。主要功能特性有:

  • 面向集合存储,易存储对象类型的数据。

  • 模式自由。

  • 支持动态查询。

  • 支持完全索引,包含内部对象。

  • 支持查询。

  • 支持复制和故障恢复。

  • 使用高效的二进制数据存储,包括大型对象(如视频等)。

  • 自动处理碎片,以支持云计算层次的扩展性。

  • 支持RUBY,PYTHON,JAVA,C ,PHP,C#等多种语言。

  • 文件存储格式为BSON(一种JSON的扩展)。

  • 可通过网络访问。

4、适用场景

1)、适用范围

1)网站实时数据处理。它非常适合实时的插入、更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。

2)缓存。由于性能很高,它适合作为信息基础设施的缓存层。在系统重启之后,由它搭建的持久化缓存层可以避免下层的数据源过载。

3)高伸缩性的场景。非常适合由数十或数百台服务器组成的数据库,它的路线图中已经包含对MapReduce引擎的内置支持。

2)、不适用的场景

1)要求高度事务性的系统。

2)传统的商业智能应用。

3)复杂的跨文档(表)级联查询。

3)、优势场景

MongoDB 的主要目标是在键/值存储方式(提供了高性能和高度伸缩性)和传统的RDBMS 系统(具有丰富的功能)之间架起一座桥梁,它集两者的优势于一身。根据官方网站的描述,Mongo 适用于以下场景。

  • 网站数据:Mongo 非常适合实时的插入,更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。

  • 缓存:由于性能很高,Mongo 也适合作为信息基础设施的缓存层。在系统重启之后,由Mongo 搭建的持久化缓存层可以避免下层的数据源过载。

  • 大尺寸、低价值的数据:使用传统的关系型数据库存储一些数据时可能会比较昂贵,在此之前,很多时候程序员往往会选择传统的文件进行存储。

  • 高伸缩性的场景:Mongo 非常适合由数十或数百台服务器组成的数据库,Mongo 的路线图中已经包含对MapReduce 引擎的内置支持。

  • 用于对象及JSON 数据的存储:Mongo 的BSON 数据格式非常适合文档化格式的存储及查询。

5、基本概念

(1)文档

文档是 MongoDB 中数据的基本单位,类似于关系数据库中的行(但是比行复杂)。多个键及其关联的值有序地放在一起就构成了文档。不同的编程语言对文档的表示方法不同,在JavaScript 中文档表示为:

{“greeting”:“hello,world”}

这个文档只有一个键“greeting”,对应的值为“hello,world”。多数情况下,文档比这个更复杂,它包含多个键/值对。例如:

{“greeting”:“hello,world”,“foo”: 3}

文档中的键/值对是有序的,下面的文档与上面的文档是完全不同的两个文档。

{“foo”: 3 ,“greeting”:“hello,world”}

文档中的值不仅可以是双引号中的字符串,也可以是其他的数据类型,例如,整型、布尔型等,也可以是另外一个文档,即文档可以嵌套。文档中的键类型只能是字符串。

(2)集合

集合就是一组文档,类似于关系数据库中的表。集合是无模式的,集合中的文档可以是各式各样的。例如,{“hello,word”:“Mike”}和{“foo”: 3},它们的键不同,值的类型也不同,但是它们可以存放在同一个集合中,也就是不同模式的文档都可以放在同一个集合中。既然集合中可以存放任何类型的文档,那么为什么还需要使用多个集合?这是因为所有文档都放在同一个集合中,无论对于开发者还是管理员,都很难对集合进行管理,而且这种情形下,对集合的查询等操作效率都不高。所以在实际使用中,往往将文档分类存放在不同的集合中,例如,对于网站的日志记录,可以根据日志的级别进行存储,Info级别日志存放在Info 集合中,Debug 级别日志存放在Debug 集合中,这样既方便了管理,也提供了查询性能。但是需要注意的是,这种对文档进行划分来分别存储并不是MongoDB 的强制要求,用户可以灵活选择。

可以使用“.”按照命名空间将集合划分为子集合。例如,对于一个博客系统,可能包括blog.user 和blog.article 两个子集合,这样划分只是让组织结构更好一些,blog 集合和blog.user、blog.article 没有任何关系。虽然子集合没有任何特殊的地方,但是使用子集合组织数据结构清晰,这也是MongoDB 推荐的方法。

(3)数据库

MongoDB 中多个文档组成集合,多个集合组成数据库。一个MongoDB 实例可以承载多个数据库。它们之间可以看作相互独立,每个数据库都有独立的权限控制。在磁盘上,不同的数据库存放在不同的文件中。MongoDB 中存在以下系统数据库。

● Admin 数据库:一个权限数据库,如果创建用户的时候将该用户添加到admin 数据库中,那么该用户就自动继承了所有数据库的权限。

● Local 数据库:这个数据库永远不会被复制,可以用来存储本地单台服务器的任意集合。

● Config 数据库:当MongoDB 使用分片模式时,config 数据库在内部使用,用于保存分片的信息。

6、数据模型

一个MongoDB 实例可以包含一组数据库,一个DataBase 可以包含一组Collection(集合),一个集合可以包含一组Document(文档)。一个Document包含一组field(字段),每一个字段都是一个key/value pair。

key: 必须为字符串类型。

value:可以包含如下类型。

● 基本类型,例如,string,int,float,timestamp,binary 等类型。

● 一个document。

● 数组类型。