第九节 ReentrantLock简述

亮子 2021-10-14 13:27:17 17407 0 0 0

01 相对于 synchronized 它具备如下特点

可中断
可以设置超时时间
可以设置为公平锁
支持多个条件变量,即对与不满足条件的线程可以放到不同的集合中等待
与 synchronized 一样,都支持可重入

02 基本语法

// 获取锁
reentrantLock.lock();
try {
 // 临界区
} finally {
 // 释放锁
 reentrantLock.unlock();
}

03 可重入

可重入是指同一个线程如果首次获得了这把锁,那么因为它是这把锁的拥有者,因此有权利再次获取这把锁如果是不可重入锁,那么第二次获得锁时,自己也会被锁挡住

  static  ReentrantLock reentrantLock = new ReentrantLock();

    public static void main(String[] args) {

        try {
            reentrantLock.lock();
            m1();
        } finally {
            reentrantLock.unlock();
        }
    }

    public static void m1() {
        try {
            reentrantLock.lock();
            m2();
        } finally {
            reentrantLock.unlock();
        }
    }

    public static void m2() {
        try {
            reentrantLock.lock();
        } finally {
            reentrantLock.unlock();
        }
    }

04 可打断

直接看例子:

这样有效避免死锁的发生。

    public static void main(String[] args) throws InterruptedException {
        ReentrantLock reentrantLock = new ReentrantLock();

        Thread t1 = new Thread(() -> {
            try {
                /**
                 *
                 * 注意这里使用的是lockInterruptibly方法,如果使用lock.lock()方法,那么这里
                 * 等待的时候是不可以被打断的
                 */
                log.info("尝试获取锁");
                reentrantLock.lockInterruptibly(); //被其它使用interrupt的线程打断
            } catch (InterruptedException e) {
                e.printStackTrace();
                log.info("获取锁失败了");
                // 这里如果出了错不要再往下执行了
                return;
            }

            try {
                log.info("获取到锁了没有被打断!");
            } finally {
                reentrantLock.unlock();
            }
        }, "t1");
        reentrantLock.lock();
        t1.start();
        Thread.sleep(222);
        // 打断线程thread,原本它的状态是在等待锁的,我们在它等待锁的时候打断了,不让它继续等待了
        t1.interrupt();
        log.info("主线程执行结束了 ");
    }

05 锁超时

直接看例子线程获取锁指定等待时间超过了就会别打断:

    public static void main(String[] args) {
        ReentrantLock lock = new ReentrantLock();


        Thread t1 = new Thread(() -> {
            try {
                      //lock.tryLock指定时间获取不到锁就会释放,lock.lock获取不到锁会无限等待
                if (!lock.tryLock(2, TimeUnit.SECONDS)) {//false
                    log.info("加锁失败了!");
                    // 这里如果出了错不要再往下执行了
                    return;
                }
            } catch (Exception e) {
                log.info("被打断啦");
                e.printStackTrace();
                //执行到这里失败就不要继续执行了
                return;
            }

            try {
                log.info("执行完啦,获取到了锁,没被打断");

            } finally {
                lock.unlock();
            }

        }, "t1");
        log.info("主线程获取锁");
        lock.lock();
        t1.start();

        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        log.info("主线程释放锁");
        lock.unlock();

        log.info("线程运行结束");
    }

使用锁超时解决哲学家就餐死锁问题:

@Slf4j
public class RepastTest {

    public static void main(String[] args) {
        Chopstick2 c1 = new Chopstick2("1");
        Chopstick2 c2 = new Chopstick2("2");
        Chopstick2 c3 = new Chopstick2("3");
        Chopstick2 c4 = new Chopstick2("4");
        Chopstick2 c5 = new Chopstick2("5");
        new Philosopher2("苏格拉底", c1, c2).start();
        new Philosopher2("柏拉图", c2, c3).start();
        new Philosopher2("亚里士多德", c3, c4).start();
        new Philosopher2("赫拉克利特", c4, c5).start();
        new Philosopher2("阿基米德", c5, c1).start();
    }

}

@Slf4j(topic = "Philosopher")
class Philosopher2 extends Thread{
    Chopstick2 left;
    Chopstick2 right;
    public Philosopher2(String name, Chopstick2 left, Chopstick2 right) {
        super(name);
        this.left = left;
        this.right = right;
    }
    private void eat() {
        log.debug("eating...");
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    @Override
    public void run() {
        while (true) {
            try {
                if (left.tryLock(2, TimeUnit.SECONDS)){
                    try {
                        if (right.tryLock(2, TimeUnit.SECONDS)){
                            try {
                                eat();
                            }finally {
                                right.unlock();
                            }
                        }
                    }finally {
                        left.unlock();
                    }
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }


        }
    }
}

class Chopstick2 extends ReentrantLock {
    private String name ;

    public Chopstick2(String name) {
        this.name = name;
    }


    @Override
    public String toString() {
        return "Chopstick{" +
                "name='" + name + '\'' +
                '}';
    }
}

06 公平锁

synchronized锁中,在entrylist等待的锁在竞争时不是按照先到先得来获取锁的,所以说synchronized锁时不公平的;ReentranLock锁默认是不公平的,但是可以通过设置实现公平锁。本意是为了解决之前提到的饥饿问题,但是公平锁一般没有必要,会降低并发度,使用trylock也可以实现。

设置:只要把构造器设置为true即可

  源码:  /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

07 条件变量

synchronized 中也有条件变量,就是我们讲原理时那个 waitSet 休息室,当条件不满足时进入 waitSet 等待
ReentrantLock 的条件变量比 synchronized 强大之处在于,它是支持多个条件变量的,这就好比

  • synchronized 是那些不满足条件的线程都在一间休息室等消息
  • 而 ReentrantLock 支持多间休息室,有专门等烟的休息室、专门等早餐的休息室、唤醒时也是按休息室来唤醒

使用要点:

  • await 前需要获得锁
  • await 执行后,会释放锁,进入 conditionObject 等待
  • await 的线程被唤醒(或打断、或超时)取重新竞争 lock 锁,执行唤醒的线程爷必须先获得锁

竞争 lock 锁成功后,从 await 后继续执行

static Lock lock = new ReentrantLock();
    static Condition waitCigaretteQueue = lock.newCondition();
    static Condition waitBreakfastQueue = lock.newCondition();
    static volatile boolean hasCigarette = false;
    static volatile boolean hasBreakfast = false;


    public static void main(String[] args) {
        Thread thread = new Thread(() -> {
            try {
                lock.lock();
                while (!hasCigarette) {
                    try {
                        waitBreakfastQueue.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                log.info("等到他的烟。");
            } finally {
                lock.unlock();
            }

        }, "等烟线程");
        thread.start();

        Thread thread2 = new Thread(() -> {

            try {
                lock.lock();
                while (!hasBreakfast) {
                    try {
                        waitCigaretteQueue.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    log.info("等到早餐!");

                }
            } catch (Exception e) {
                e.printStackTrace();
                lock.unlock();
            }
        }, "等早餐线程");

        thread2.start();

        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        sendCigarette();
        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        sendBreakfast();

    }

    public static void sendCigarette() {
        try {
            lock.lock();
            log.info("烟来了");
            hasCigarette = true;
            waitCigaretteQueue.signal();
        } finally {
            lock.unlock();
        }
    }

    public static void sendBreakfast() {
        lock.lock();
        try {
            log.info("送早餐来了");
            hasBreakfast = true;
            waitBreakfastQueue.signal();
        } finally {
            lock.unlock();
        }
    }

08 同步模式之顺序控制

固定运行顺序,比如,必须先 2 后 1 打印

  • wait notify 版
public class OrderLock {
    // 用来同步的对象
    static Object obj = new Object();

    // t2 运行标记, 代表 t2 是否执行
    static boolean t2runed = false;

    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            synchronized (obj) {
                while (!t2runed) {

                    try {
                        obj.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                System.out.println(1);
            }

        }, "t1");

        Thread t2 = new Thread(() -> {

            synchronized (obj) {
                t2runed = true;
                obj.notify();
            }
            System.out.println(2);

        }, "t2");

        t1.start();
        t2.start();

    }
}
  • Park Unpark 版
/**
 * wait 和 notify的缺点
 * 首先,需要保证先 wait 再 notify,否则 wait 线程永远得不到唤醒。因此使用了『运行标记』来判断该不该
 * wait
 * 第二,如果有些干扰线程错误地 notify 了 wait 线程,条件不满足时还要重新等待,使用了 while 循环来解决
 * 此问题
 * 最后,唤醒对象上的 wait 线程需要使用 notifyAll,因为『同步对象』上的等待线程可能不止一个
 * 
 * park 和 unpark 方法比较灵活,他俩谁先调用,谁后调用无所谓。并且是以线程为单位进行『暂停』和『恢复』,
 * 不需要『同步对象』和『运行标记』,不存在一个多个线程同时等待一个对象锁的现象,因为每个线程调用park的结果是等待它自己线程的upark来解锁
 */
public class Test36 {
    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            try { Thread.sleep(1000); } catch (InterruptedException e) { }
            // 当没有『许可』时,当前线程暂停运行;有『许可』时,用掉这个『许可』,当前线程恢复运行
            LockSupport.park();
            System.out.println("1");
        });
        Thread t2 = new Thread(() -> {
            System.out.println("2");
            // 给线程 t1 发放『许可』(多次连续调用 unpark 只会发放一个『许可』)
            LockSupport.unpark(t1);
        });
        t1.start();
        t2.start();
    }
}
  • 使用notify和wait实现循环打印abcabc
public class WaitNotify {
    /**
     * 使用notify和wait实现循环打印abcabc
     * 交替打印ABC
     * 输出内容:    等待标记:     下一个标记:
     * A             1            2
     * B             2            3
     * C             3            1
     */
    public static void main(String[] args) {
        WaitNotifyDemo waitNotify = new WaitNotifyDemo(1, 15);
        new Thread(() -> {
            waitNotify.print("a", 1, 2);
        }, "线程一").start();
        new Thread(() -> {
            waitNotify.print("b", 2, 3);
        }, "线程二").start();
        new Thread(() -> {
            waitNotify.print("c", 3, 1);
        }, "线程三").start();

    }
}
class WaitNotifyDemo {
    int flag;
    int loopNumber;
    public WaitNotifyDemo(int flag, int loopNumber) {
        this.flag = flag;
        this.loopNumber = loopNumber;
    }
    /**
     * @param str      要打印的内容
     * @param flag     线程的打印标记
     * @param nextFlag 下一个打印标记
     */
    public void print(String str, int flag, int nextFlag) {
        for (int i = 0; i < loopNumber; i++) {
            synchronized (this) {
                while (this.flag != flag) {
                    try {
                        this.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                //标记相同则打印
                System.out.println(str);
                this.flag = nextFlag;
                // 修改了打印标记,唤醒其它线程让他们抢啦!
                this.notifyAll();
            }
        }
    }
}

002 交替输出

交替输出,线程 1 输出 a 5 次,线程 2 输出 b 5 次,线程 3 输出 c 5 次。现在要求输出 abcabcabcabcabc 怎么实现

wait notify 版 Test37.java
Lock 条件变量版

public class AwaitSignalDemo {
    public static void main(String[] args) {
        AwaitSignal awaitSignal = new AwaitSignal(15);
        Condition aCondition = awaitSignal.newCondition();
        Condition bCondition = awaitSignal.newCondition();
        Condition cCondition = awaitSignal.newCondition();


        new Thread(()->{
            awaitSignal.print("a",aCondition,bCondition);
        },"线程一").start();
        new Thread(()->{
            awaitSignal.print("b",bCondition,cCondition);
        },"线程二").start();
        new Thread(()->{
            awaitSignal.print("c",cCondition,aCondition);
        },"线程三").start();

        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        awaitSignal.lock();
        try {
            aCondition.signal();
        }finally {
            awaitSignal.unlock();
        }
    }
}

class AwaitSignal extends ReentrantLock {
    int loopNUmber;

    public AwaitSignal(int loopNUmber) {
        this.loopNUmber = loopNUmber;
    }

    public void print(String str, Condition current, Condition next) {
        for (int i = 0; i < loopNUmber; i++) {
            this.lock();
            try {
                try {
                    current.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(str);
                next.signal();
            } finally {
                this.unlock();
            }
        }

    }
}
  • Park Unpark 版
public class Test39 {

    static Thread thread2 ;
    static Thread thread1;
    static Thread thread3;
    
    public static void main(String[] args) {

        ParkUnpark parkUnpark = new ParkUnpark(15);


        thread1 = new Thread(() -> {
            parkUnpark.print("a",thread2);
        }, "线程一");
        thread2 = new Thread(() -> {
            parkUnpark.print("b",thread3);
        }, "线程二");
        thread3 = new Thread(() -> {
            parkUnpark.print("c",thread1);
        }, "线程三");
        
        thread1.start();
        thread2.start();
        thread3.start();

        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        
        LockSupport.unpark(thread1);
    }
    
    
}


class ParkUnpark{
    int loopNumber;

    public ParkUnpark(int loopNumber) {
        this.loopNumber = loopNumber;
    }
    
    public void print(String str , Thread next ){
        for (int i=0;i<loopNumber;i++){
            LockSupport.park();
            System.out.print(str);
            LockSupport.unpark(next);
        }
    }
}

参考文档